

Python IndentaƟon
Python indentaƟon is a fundamental concept since improper indentaƟon will result in an IndentaƟonError
and prevent the code from compiling.

Python indentaƟon is the process of inserƟng white space before a statement in a specific code
block. Stated differently, every statement that has an idenƟcal space on the right side is a part of the same
code block.

For example:
The lines print(‘Welcome to Mangaldai College’) and print(‘CSIT Department’) are two separate

code blocks. The two blocks of code in our example if-statement are both indented four spaces. The final
print(‘Thank you for visiƟng us’) is not indented, so it does not belong to the else block.

site = 'CSIT'
if site == 'CSIT' :
 print(‘Welcome to Mangaldai College ')
else:
 print(‘CSIT Department’)
print(‘Thank you for visiƟng us’)

Python List, Tuple, Set, DicƟonary

List: Similar to dynamically sized arrays declared in other languages (such as vector in C++ and ArrayList in
Java), Python lists are similar to those. To put it simply, a list is an assortment of items separated by
commas and enclosed in [].
For Example:
 Var = ["Welcome", "to", "CSIT"]

print(Var)

To create a list in Python, simply enclose the sequence in square brackets []. A list can create a list

without the need for an internal funcƟon, unlike Sets.

Tuple: Similar to a list, a tuple is a collecƟon of Python objects. A tuple is made up of an arbitrary sequence
of values that are indexed by whole numbers.

"Commas" are used syntacƟcally to separate values in a tuple. It is more common to define a tuple
by closing the value sequence in parenthesis, though it is not required. This facilitates a beƩer
understanding of the Python tuples.
For example:

Tuple1 = ('Mangaldai', 'College')
print(Tuple1)

Set: An unordered, mutable, iterable collecƟon of data types with no duplicate elements is called a set in
Python. Even though a set may contain a variety of elements, the order in which they appear is not
specified. Using a set instead of a list has the main benefit of having a highly efficient way to determine
whether a given element is included in the set.

Sets can be created by using the built-in set() funcƟon with an iterable object or a sequence by
placing the sequence inside curly braces, separated by a ‘comma’.

For Example:

CSIT = set("Mangaldai College")
print(CSIT)

DicƟonary: Python dicƟonaries, as opposed to other data types that only contain a single value as an
element, are collecƟons of keys and values that are used to store data values, much like a map.
For Example:
 Dict = {1: 'CSIT', 2: 'Mangaldai', 3: 'College'}

print(Dict)

ExcepƟon Handling

Python errors come in two flavors: syntax errors and excepƟons. Program errors are issues that cause the
program to halt its execuƟon. However, excepƟons are raised when internal events take place that alter
the program's normal flow.

Various Python excepƟon types include:
When a problem arises while a program is being executed in Python, a number of built-in excepƟons can
be raised. The following are a few of the most typical Python excepƟon types:

SyntaxError: This excepƟon is raised when the interpreter encounters a syntax error in the code,
such as a misspelled keyword, a missing colon, or an unbalanced parenthesis.

TypeError: This excepƟon is raised when an operaƟon or funcƟon is applied to an object of the
wrong type, such as adding a string to an integer.

NameError: This excepƟon is raised when a variable or funcƟon name is not found in the current
scope.

IndexError: This excepƟon is raised when an index is out of range for a list, tuple, or other sequence
types.

KeyError: This excepƟon is raised when a key is not found in a dicƟonary.

ValueError: This excepƟon is raised when a funcƟon or method is called with an invalid argument
or input, such as trying to convert a string to an integer when the string does not represent a valid
integer.

AƩributeError: This excepƟon is raised when an aƩribute or method is not found on an object, such
as trying to access a non-existent aƩribute of a class instance.
IOError: This excepƟon is raised when an I/O operaƟon, such as reading or wriƟng a file, fails due
to an input/output error.

ZeroDivisionError: This excepƟon is raised when an aƩempt is made to divide a number by zero.

ImportError: This excepƟon is raised when an import statement fails to find or load a module.

For Example:
 x = 5

y = "hello"
try:
 z = x + y
except TypeError:

 print("Error: cannot add an int and a str")
